Bounded $$H^\infty $$-calculus for a degenerate elliptic boundary value problem
نویسندگان
چکیده
Abstract On a manifold X with boundary and bounded geometry we consider strongly elliptic second order operator A together degenerate T of the form $$T=\varphi _0\gamma _0 + \varphi _1\gamma _1$$ T=φ0γ0+φ1γ1 . Here $$\gamma _0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">γ0 xmlns:mml="http://www.w3.org/1998/Math/MathML">γ1 denote evaluation function its exterior normal derivative, respectively, at boundary. We assume that $$\varphi _0, _1\ge 0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φ0,φ1≥0 , _0+\varphi c$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φ0+φ1≥c for some $$c>0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">c>0 where either _0,\varphi _1\in C^{\infty }_b(\partial X)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φ0,φ1∈Cb∞(∂X) or _0=1 $$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φ0=1 _1=\varphi ^2$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">φ1=φ2 \in C^{2+\tau }(\partial xmlns:mml="http://www.w3.org/1998/Math/MathML">φ∈C2+τ(∂X) $$\tau >0$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">τ>0 also highest coefficients belong to $$C^\tau (X)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Cτ(X) lower are in $$L_\infty xmlns:mml="http://www.w3.org/1998/Math/MathML">L∞(X) show $$L_p(X)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Lp(X) -realization respect has $$H^\infty xmlns:mml="http://www.w3.org/1998/Math/MathML">H∞ -calculus. then obtain unique solvability associated value problem adapted spaces. As an application, short time existence solutions porous medium equation.
منابع مشابه
On a Nonlinear Elliptic Boundary Value Problem
Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...
متن کاملSemilinear Elliptic Boundary-value Problems on Bounded Multiconnected Domains
A semilinear elliptic boundary-value problem on bounded multiconnected domains is studied. The authors prove that under suitable conditions, the problem may have no solutions in certain cases and many have one or two nonnegative solutions in some other cases. The radial solutions were also studied in annular domains.
متن کاملBounded R00-calculus for Elliptic Operators
It is shown, in particular, that L p-realizations of general elliptic systems on Rn or on compact manifolds without boundaries possess bounded imaginary powers, provided rather mild regularity conditions are satisfied. In addition, there are given some new perturbation theorems for operators possessing a bounded H00-calculus. 0. Introduction. It is the main purpose of this paper to prove under ...
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملAn Inverse Boundary-value Problem for Semilinear Elliptic Equations
We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2021
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-021-02251-1